1.

가

PrandIt(1921)Reissner(1924)

Prandlt-Reissner

가

(1) (Terzaghi, 1943; Meyerhof,

1951); (2) (Shield, 1954; Chen,

1975; Sarma, 1979; Sarama and Iossifelis, 1990; Drescher and Detournay, 1993;

Michalowski, 1995; Soubra, 1999); (3) Slip-line

(Sokolovskii, 1960; Hansen, 1961); (4)

(Griffiths, 1982; Frydman and Burd, 1997).

(failure equation)

(Murff, 1994; Bransby

and Randolph, 1998; Taiebat and Carter,

2000).

(Terzaghi,

Meyerhof, Hanen, Vesic)

2.

2.1

Terzaghi(1943)

(1) 2.2  $q_u = cN_c + qN_q + \frac{1}{2} BN$ (1) 가 , C ( = 0, c = 3

Bolton(1979)  $N_c$ ,  $N_q$ ,  $N_r$ 

Terzaghi  $_{s} = 1.2$ Bolton

(strip foundation)

Meyerhof(1951, 1963)

Terzaghi가 , Terzaghi가 Osborne (1991)

Meyerhof

가

. Hansen(1970) Vesic(1973)Meyerhof

$$\begin{aligned} q_u &= c N_{c \ cs} \ \ _{cd \ ci} \ \ _{cg} \ \ _{ct} + q N_{q \ qs} \ \ _{qd} \ \ _{qs} \ \ _{qt} \\ &+ \frac{1}{2} \ BN \quad _{s \ d} \quad i \ \ _{g} \ \ t \end{aligned} \tag{2}$$

ct, qt, t

$$V_{t} \\$$
 (suction)

, Murff(1994)

( ) 
$$V_t = -V_c = -V_u$$
 7  
( 4) ( 5)  
 $3V_uD$   $4V_u$ 

, (5) ( 6)

$$\sqrt{\left(\frac{M}{_{3}V_{u}D}\right)^{2} + \left(\frac{H}{_{4}V_{u}}\right)^{2} + \left(\frac{V}{V_{u}}\right)^{2} - 1} = 0$$
 (5)

$$\sqrt{\left(\frac{M}{M_u}\right)^2 + \left(\frac{H}{H_u}\right)^2 + \left(\frac{V}{V_u}\right)^2 - 1} = 0$$
 (6)

Taiebat Carter(2000)3

. ,Taiebat Carter ( 7) .

$$\left(\frac{V}{V_{u}}\right)^{2} + \left[\frac{M}{M_{u}}\left(1 - \frac{HM}{H_{u}|M|}\right)\right]^{2} + \left|\left(\frac{H}{H_{u}}\right)^{3}\right| = 1$$
 (7)

, Taiebat

Carter





(6) 3.1 Terzaghi(1943), Meyerhof(1963), Hansen(1970), Vesic(1973), Chen(1975), Eurocode

7 < 1> [ 3]

| < 1>      |                                                              |                        |                                                        |  |  |  |  |
|-----------|--------------------------------------------------------------|------------------------|--------------------------------------------------------|--|--|--|--|
|           | N <sub>q</sub>                                               | N <sub>c</sub>         | N                                                      |  |  |  |  |
| Terzaghi  | $\frac{a^{2}}{a\cos^{2}(45 + /2)}$ $a = e^{(0.75 - /2)\tan}$ | (N <sub>q</sub> -1)cot | $\frac{\tan}{2} \left( \frac{K_p}{\cos^2} - 1 \right)$ |  |  |  |  |
| Meyerhof  | $e^{\tan \tan^2\left(45 + \frac{1}{2}\right)}$               | (N <sub>q</sub> -1)cot | (N <sub>q</sub> -1)tan(1.4 )                           |  |  |  |  |
| Hansen    | $e^{tan} tan^2 \left( 45 + \frac{1}{2} \right)$              | (N <sub>q</sub> -1)cot | 1.5(N <sub>q</sub> -1)tan                              |  |  |  |  |
| Vesic     | $e^{tan} tan^2 \left( 45 + \frac{1}{2} \right)$              | (N <sub>q</sub> -1)cot | 2(N <sub>q</sub> +1)tan                                |  |  |  |  |
| Chen      | $e^{\tan \tan^2\left(45 + \frac{\pi}{2}\right)}$             | (N <sub>q</sub> -1)cot | $2(N_q+1)\tan \tan \left(45+\frac{1}{5}\right)$        |  |  |  |  |
| Eurocode7 | $e^{tan} tan^2 \left(45 + \frac{1}{2}\right)$                | (N <sub>q</sub> -1)cot | 2(N <sub>q</sub> -1)tan                                |  |  |  |  |



3.2

3.2.1

(9) (10)

$$A_{x} = \frac{D^{2}}{2} \left( A \operatorname{rccos} \frac{2e}{D} - \frac{2e}{D} \sqrt{1 - \left(\frac{2e}{D}\right)^{2}} \right)$$
 (9)

$$\frac{B_s}{L_s} = \frac{b}{I} = \sqrt{\frac{D-2e}{D+2e}}$$
 (10)

, D , e 
$$(=M \ / \ V) \qquad .$$

V-H

|                     | < 2> V-H (                                                                                                                                                                                                                                                                                                               | )                                                                         |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                     |                                                                                                                                                                                                                                                                                                                          |                                                                           |
| Meyerhof            | $\begin{split} \frac{H}{As_{u}} &= \frac{V}{As_{u}} \tan \left[ \frac{1}{2} \left( 1 \cdot \sqrt{\frac{1}{N_{c}} \frac{V}{As_{u}}} \right) \right] \\ \frac{H}{H_{u}} &= 6.17 \frac{V}{V_{u}} \tan \left[ \frac{1}{2} \left( 1 \cdot \sqrt{\frac{6.17}{N_{c}} \frac{V}{cs}} \frac{V}{V_{u}} \right) \right] \end{split}$ | $N_c = 5.14$ $cs = 1.2$ $ci = \left(1 - \frac{1}{90}\right)^2$            |
| Vesic               | $\frac{V}{As_u} = \frac{1}{cs} \left( N_c - 1.5 \frac{H}{As_u} \right)$ $\frac{V}{V_u} = \frac{6.14}{cs} \left( N_c - 1.5 \frac{H}{H_u} \right)$                                                                                                                                                                         | $N_{c} = 5.14$ $_{cs} = 1.194$ $_{ci} = 1 - \frac{mH}{A_{f} C_{a} N_{c}}$ |
| Bolton              | $\frac{V}{As_u} = 1.2 \left[ 1 + -\arcsin\left(\frac{H}{As_u}\right) + \sqrt{1 - \left(\frac{H}{As_u}\right)^2} \right]$ $\frac{V}{V_u} = 0.2 \left[ 1 + -\arcsin\left(\frac{H}{H_u}\right) + \sqrt{1 - \left(\frac{H}{H_u}\right)^2} \right]$                                                                           |                                                                           |
| Taiebat<br>& Carter | $\frac{V}{As_{u}} = 5.7 \sqrt{1 - 0.9 \frac{A}{As_{u}}}^{3}, \left(\frac{V}{V_{u}}\right)^{2} + \left \left(\frac{H}{H_{u}}\right)^{3}\right  = 1$                                                                                                                                                                       |                                                                           |
| Murff               | $\left \frac{H}{H_u}\right  + \left(\frac{V}{V_u}\right)^2 - 1 = 0$                                                                                                                                                                                                                                                      |                                                                           |
| , V <sub>u</sub> :  | (H = 0, M = 0)                                                                                                                                                                                                                                                                                                           |                                                                           |

(V = 0, M = 0)

(8)

[ 4] < 2>

Taiebat Carte7h ) 가 .[5] Murff 가 V/仏-H/H





, , Meyerhof 가 , Taiebat Carte

Taiebat Carter

가 . 가

.

가

(critical angle) < 3>

•

| < 3>             |                     |                     |       |  |  |  |
|------------------|---------------------|---------------------|-------|--|--|--|
|                  | (V <sub>u</sub> )   | (H <sub>u</sub> )   |       |  |  |  |
| Meyerhof         | 6.17As,             | 1.0As <sub>u</sub>  | 12.2。 |  |  |  |
| Vesic            | 6.14As <sub>u</sub> | 1.0As <sub>u</sub>  | 13。   |  |  |  |
| Bolton           | 6.17As <sub>u</sub> | 1.0As <sub>u</sub>  | 18。   |  |  |  |
| Taiebat & Carter | 5.7As₄              | 1.02As <sub>u</sub> | 19。   |  |  |  |

, (Meyerhof, Hansen, Vesic)

가 , Taiebat Carte카 7

.

| 7.0            | - | 13 13 | 4 4: | — Meyerho              |        |
|----------------|---|-------|------|------------------------|--------|
| 6.0            | - | -     | -    | — Vesic                |        |
| 5.0            |   | -     | 454  | -#- Bolton<br>Taiebat& | Carter |
| g 4.0          |   | -     | - 3  |                        |        |
| 7.4.0<br>→ 3.0 |   |       |      | 11                     |        |
| 2.0            |   |       | 1    | 4.0                    |        |
| 1.0            |   | 1.    | -    | 4                      | 1      |
| 0.0            |   | 1     |      | 1 1                    | 1      |

3.2.2

(2) V-M

1

. ( 8)

(9) (10) e=M/V V-M [6]

Taiebat Carter

, 0

0.8As ,

. [ 6] , Meyerhof, Hansen,

Vesic

,  $(M_{max})$   $(V_u)$  1/2 (e/D) 0.2

 $M_{max} / D = 0.095 V_u$  (11)

 $q_u = \frac{1}{2} B N_{s}$  (12)

, N , s , i , i , B

, < 4> [

7] .

|          | < 4> V-H                                                                                               | ( )                                                                               |
|----------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Meyerhof | $\frac{H}{AB} = \frac{V}{AB} \tan \left[ \left( 1 - \sqrt{\frac{2}{N_s} \frac{V}{AB}} \right) \right]$ | i = (1                                                                            |
| Vesic    | $\frac{H}{AB} = \frac{V}{AB} \left( 1 - 2.5 \sqrt{\frac{2}{N} \frac{V}{AB}} \right)$                   | $_{i} = \left(1 - \frac{H}{V + A_{i}C_{a}\cot}\right)^{n+1}$ $m = 2.5, c_{a} = 0$ |
| Hansen   | $\frac{H}{AB} = \frac{1}{0.7} \frac{V}{AB} \left( 1 - 3.5 \right) \frac{2}{N} \frac{H}{AB}$            |                                                                                   |

( ) 30°, 31°, 32° 가

가 , Vesic Hansen

 $H_{max}/V_u$  . .

Vesic Hansen [ 7] V/V<sub>u</sub> H/H<sub>max</sub>

, Meyerhof

45° 55° . Vesic Hansen .



|          | < 5> | (V <sub>u</sub> ) | (H <sub>max</sub> ) |                     |     |
|----------|------|-------------------|---------------------|---------------------|-----|
|          |      |                   |                     | Vu/H <sub>max</sub> |     |
| Meyerhof | 30。  | 10.19 AB          | 0.80 AB             |                     | 30。 |
|          | 31。  | 12.18 AB          | 0.99 AB             | 0.08                | 31。 |
|          | 32。  | 14.60 AB          | 1.22 AB             |                     | 32。 |
|          | 30。  | 4.52 AB           | 0.59 AB             |                     |     |
| Vesic    | 31。  | 5.31 AB           | 0.70 AB             | 0.13                | 45。 |
|          | 32。  | 6.24 AB           | 0.82 AB             |                     |     |
|          | 30。  | 6.72 AB           | 0.83 AB             |                     |     |
| Hansen   | 31。  | 7.80 AB           | 0.96 AB             | 0.12                | 55。 |
|          | 32。  | 9.06 AB           | 1.12 AB             |                     |     |

## Technical Report ...ネ

가

|      | < 6> |        |       |         |     |       |         |             |
|------|------|--------|-------|---------|-----|-------|---------|-------------|
| Test |      |        |       |         |     |       |         |             |
| No.  | (m)  | (m)    | (m)   | (kN/m³) | ( 9 | (kPa) | (kPa)   |             |
| 1    | 0    | 0.5    | 2     | 15.69   | 39  | 6.37  | 1059.48 |             |
| 2    | 0.5  | 0.5    | 2     | 16.38   | 36  | 3.92  | 1196.82 |             |
| 3    | 0.5  | 0.5    | 2     | 17.06   | 41  | 7.8   | 2374.02 | Muhs        |
| 4    | 0.5  | 1      | 1     | 17.06   | 39  | 7.8   | 3237.30 | ]           |
| 5    | 0.4  | 0.71   | 0.71  | 17.65   | 22  | 12.75 | 402.21  |             |
| 6    | 0.5  | 0.71   | 0.71  | 17.65   | 25  | 14.7  | 539.55  | <b></b> .   |
| 7    | 0    | 0.71   | 0.71  | 17.06   | 20  | 9.8   | 215.82  | Milovic     |
| 8    | 0.3  | 0.71   | 0.71  | 17.06   | 20  | 9.8   | 255.06  | 1           |
| 9    | 0    | 0.1015 | 0.127 | 17.16   | 40  | 0     | 316.00  | Yetimoglu   |
| 10   | 0    | 0.05   | 0.2   | 16.6    | 44  | 0     | 67.60   |             |
| 11   | 0    | 0.0381 | 0.2   | 16.6    | 44  | 0     | 63.25   | Leshchinsky |
| 12   | 0.01 | 0.05   | 0.2   | 16.6    | 44  | 0     | 95.60   | 1           |

4.

Milovic, Muhs, Yetimoglu Leshchinsky

< 6> [ 8]

5.



1)  $N_q$ ,  $N_c$  Terzaghi

, N

가 가

2)

Meyerhof, Vesic 12.2, 13.0° , Taiebat Carter 3

19° . V-M

Taiebat Carter

3)

가 가 ,  $(H_{max}) \qquad , \\ , \mbox{Vesic, Meyerhof,} \qquad , \qquad \mbox{가}$  Hansen  $(V_u) \ 8\%,$ 

, Terzaghi

13%, 12%

4)

Bransby, M.F., and Randolph, M.F.(1998), "Combined Loading of Skirted Foundations", Geotechnique, London, 48(5), pp.637 ~ 655. Chen, W.F.(1975), Limit Analysis and Soil Plasticity, Elsevier Science, Amsterdam.

D. Leshchinsky, G.F. Marcozzi (1990), "Bearing capacity of shallow foundations: rigid versus flexible models", Journal of Geotechnical Engineering, Vol. 116, No. 11, pp.1750 ~ 1755.

Drescher, A., and Detournay, E.(1993), "Limit Load in Translational Failure Mechanisms for Associative and Non-associative materials", Geotechnique, London, 34(2), pp.199 ~ 210.

Frydman, S., and Burd, H.J.(1997), "Numerical Studies of Bearing Capacity Factor", J. Geotech. and Geoenvir. Engrg., ASCE, 123(1), pp.20 ~ 29.

Griffiths, D.V.(1982), "Computation of Bearing Capacity Factors Using Finite Elements", Geotechnique, London, 32(3), pp.195 ~ 202.

Hansen, B.J.(1961), "A General Formula for Bearing Capacity", Bull. Dan. Geotech. Inst., 11, pp.38 ~ 46.

Meyerhof, G.G.(1951), "The Ultimate Bearing Capacity of Foundations", Geotechnique, Vol. 2, No. 4, pp.301 ~ 331.

Meyerhof, G.G.(1963), "Some Recent Research on the Bearing Capacity of Foundations", CGJ, Vol. 1, No. 1, pp.16~26.

Michalowski, R.L., and Shi, L.(1995), "Bearing Capacity of Footings over Two-layer Foundation Soils", J. Geotech. Engrg., ASCE, 121(5), pp.421 ~ 428.

Milovic, D.M. (1965), "Comparison between the Calculated and Experimental Values of the Ultimate Bearing Capacity", 6th ICSMFE, Vol. 2, pp.142~144.

Muhs, H., and K. Weiss(1969), "The Influence of the Load Inclination on the Bearing Capacity of Shallow Footings", 7th ICSMFE, Vol. 2, pp.187 ~ 194.

Murff, J.D.(1994)," Limit Analysis of Multi footing Foundation System", Proceedings of Computer Methods and Advanced Geomechanics, pp.233 ~ 244.

Prandtl, L.(1920), Uber die Haete plastistischer Korper. Nachr. Ges. Wissensch, Gottingen, pp.74 ~ 85.

Reissner, H.(1924), "Zum Erddruckproblem", Proc. 1st Int. Congr. for Appl. Mech., C.B. Biezeno and J.M. Burgers, eds., pp.295~311.

Sarama, S.K., and Iossifelis, I.S.(1990), "Seismis Bearing Capacity Factors of Shallow Strip Footings", Geotechnique, London, 40(2), pp.265~273.

Sarma, K.(1979), "Stability Analysis of Embankments and Slop", J. Geotech. Engrg., ASCE, 105(12), pp.1511 ~ 1524.

Shield, R.T.(1954), "Plastic Potential Theory and the Prandtl Bearing Capacity Solution", J. Appl. Mech.., 21, pp.193 ~ 194.

Sokolovskii, V.V.(1960), Statics of Soil Media, R. Jones and A.N. Schofield, translators, Butterworth 's, London.

Soubra, A.H.(1999), "Upper-bound Solutions for Bearing Capacity of Foundations", J. Geotech. and Geoenvir. Engrg., ASCE, 125(1), pp.59 ~ 68.

- ) T. Yetimoglu, J.T.H. Wu, A. Saglamer(1994), "Bearing capacity of rectangular footings on Geogrid-reinforced sand", Journal of Geotechnical Engineering, Vol. 120, No. 12, pp.2084 ~ 2093.
- ) Taiebat H. & Cater J.P.(2000), "Numerical studies of the bearing capacity of shallow footings on cohesive soil subjected to combined load in geotechnique, 50(4), pp.408 ~ 418.
- ) Terzaghi, K.(1943), Theoretical Soil Mechanics, John Wiley & Sons, New York, 510pp.
- ) Vesic, A.S.(1973), "Analysis of Ultimate Loads of Shallow Foundations", JSMFD, Vol. 99, SM 1, pp.45 ~ 73.