2.2

3)

зVuD

_02 - 3433 - 7785

1.

. 가 , Prandlt(1921)Reissner(1924) .

Prandlt-Reissner

. 가 .

(1) (Terzaghi, 1943; Meyerhof, 1951); (2) (Shield, 1954; Chen, 1975; Sarma, 1979; Sarama and Iossifelis, 1990; Drescher and Detournay, 1993; Michalowski, 1995; Soubra, 1999); (3) Slip-line (Sokolovskii, 1960; Hansen, 1961); (4)

(Griffiths, 1982; Frydman and Burd, 1997).

가 () , .

(failure equation) (Murff, 1994; Bransby and Randolph, 1998; Taiebat and Carter, 2000).

(Terzaghi, Meyerhof, Hanen, Vesic)

. , ,)

2.

2.1 Terzaghi(1943)

(1) $q_u = cN_c + qN_q + \frac{1}{2}BN$ (1)

, q , C , B N_c, N_q, N_r

Terzaghi .

Meyerhof(1951, 1963)

Terzaghi가 . , Terzaghi가

Meyerhof

.

가 .

. Hansen(1970) Vesic(1973)Meyerhof

. $q_u = cN_c cs cd ci cq ct + qN_q as qd qi qq qt$ $+\frac{1}{2}$ BN s d i g t (2) , cd, qd, d , cs, as

> , ci, di, , cg, dg, d , ct, qt, t

가 가 (=0, c = 3)Bolton(1979) (strip foundation) , _s=1.2 . Bolton (. $\frac{V}{A} = 1.2s_u \left[1 + -\arcsin\left(\frac{H}{As_u}\right) \right]$ (3) Osborne (1991) , Murff(1994) 3

(4) , . $\left[\frac{\left(\frac{M}{D} \right)^2}{1 + {}_1H^2} + {}_2\left[\frac{V^2}{V_c} - V\left(1 - \frac{V_t}{V_c} \right) + V_t \right] = 0 \quad (4)$, 1, 2 , Vc, Vt . Vt

(suction)

) $V_t = -V_c = -V_u$ 가 (4) (5) 4Vu

> , (5) (6) .

Technical Report?

Taiebat Carter(2000)3

(5)
3.1
(6)
Terzaghi(1943), Meyerhof(1963), Hansen(1970), Vesic(1973), Chen(1975), Eurocode

.

3.

7 < 1> [3]

< 1>							
	N _q	N _c	N				
Terzaghi	$\frac{a^2}{a\cos^2(45 + /2)} a = e^{(0.75 - /2)tan}$	(N _q -1)cot	$\frac{\tan}{2} \left(\frac{K_p}{\cos^2} - 1 \right)$				
Meyerhof	$e^{\tan} \tan^2\left(45 + \frac{1}{2}\right)$	(N _q -1)cot	(N _q -1)tan(1.4)				
Hansen	$e^{\tan} \tan^2\left(45 + \frac{1}{2}\right)$	(N _q -1)cot	1.5(N _q -1)tan				
Vesic	$e^{\tan} \tan^2\left(45 + \frac{1}{2}\right)$	(N _q -1)cot	$2(N_q+1)$ tan				
Chen	$e^{\tan} \tan^2\left(45 + \frac{1}{2}\right)$	(N _q -1)cot	$2(N_q+1) \tan \tan\left(45+\frac{1}{5}\right)$				
Eurocode7	$e^{\tan} \tan^2\left(45 + \frac{1}{2}\right)$	(N _q -1)cot	2(N _q -1)tan				

3.2

3.2.1

, D , e

(1) V-H

V-H

	< 2> V-H ()
Meyerhof	$\frac{H}{As_{u}} = \frac{V}{As_{u}} \tan \left[\frac{1}{2} \left(1 - \frac{1}{\sqrt{N_{c}}} \frac{V}{s_{u}} \right) \right]$	$N_{c} = 5.14$ $c_{s} = 1.2$
	$\frac{H}{H_u} = 6.17 \frac{V}{V_u} \tan \left[\frac{1}{2} \left(1 - \int \frac{0.17}{N_c} \frac{V}{V_u} \right) \right]$	$_{ci} = \left(1 - \frac{1}{90}\right)$
	$\frac{V}{H} = \frac{1}{2} \left(N_{c} = 1, \frac{5}{2} \frac{H}{h} \right)$	$N_{c} = 5.14$
Vesic	$As_u = As_u$	_{cs} = 1.194
	$\frac{V}{V_u} = \frac{6.14}{cs} \left(N_c - 1.5 \frac{H}{H_u} \right)$	$_{ci} = 1 - \frac{m H}{A_f c_a N_c}$
Polton	$\frac{V}{As_{u}} = 1.2 \left[1 + -\arcsin\left(\frac{H}{As_{u}}\right) + \sqrt{1 - \left(\frac{H}{As_{u}}\right)^{2}} \right]$	
Bolton	$\frac{V}{V_{u}} = 0.2 \left[1 + -\arcsin\left(\frac{H}{H_{u}}\right) + \sqrt{1 - \left(\frac{H}{H_{u}}\right)^{2}} \right]$	
Taiebat & Carter	$\frac{V}{As_u} = 5.7 \sqrt{1 - 0.9 \left(\frac{H}{As_u}\right)^3} \cdot \left(\frac{V}{V_u}\right)^2 + \left \left(\frac{H}{H_u}\right)^3\right = 1$	
Murff	$\left \frac{H}{H_{u}}\right + \left(\frac{V}{V_{u}}\right)^{2} - 1 = 0$	
, V _u :	(H = 0, M = 0)	
H _u :	(V = 0, M = 0)	
s _u :		

(8) . (ଭୁ) .

< 2> . [4] < 2> .

Taiebat Carte7h

가 , () 가 .[5] Murff 가 V/\(\-H/H\

Technical Report …ネ

, Meyerhof 가 , Taiebat Carter . 가 가 .

가 (critical angle) < 3>

. < 3> (V_u) (H_u)

Meyerhof	6.17As	1.0As _u	12.2。	
Vesic	6.14As,	1.0As _u	13,	
Bolton	6.17As,	1.0As _u	18。	
Taiebat&Carter	5.7As	1.02Asu	19。	

(2) V-M

					가	
,						
(8)					
		,	•	,		

(9) (10) e=M/V V-M [6].

Taiebat Carter 0 M_u ,

0.8A_s,

. [6] , Meyerhof, Hansen, Vesic , (M_{max})

(V_u) 1/2 (e/D) 0.2 . $M_{max} / D = 0.095 V_u$ (11)

.

가

, < 4> [

		(Vu)	(1 Imax)		
				Vu/Hmax	
Meyerhof	30.	10.19 AB	0.80 AB		30.
	31。	12.18 AB	0.99 AB	0.08	31。
	32。	14.60 AB	1.22 AB		32。
	30.	4.52 AB	0.59 AB		
Vesic	31。	5.31 AB	0.70 AB	0.13	45 _°
	32。	6.24 AB	0.82 AB		
Hansen	30.	6.72 AB	0.83 AB		
	31。	7.80 AB	0.96 AB	0.12	55 。
	32。	9.06 AB	1.12 AB		

			< 6>					
Test								
No.	(m)	(m)	(m)	(kN/m³)	()	(kPa)	(kPa)	
1	0	0.5	2	15.69	39	6.37	1059.48	
2	0.5	0.5	2	16.38	36	3.92	1196.82	Muha
3	0.5	0.5	2	17.06	41	7.8	2374.02	Muns
4	0.5	1	1	17.06	39	7.8	3237.30	
5	0.4	0.71	0.71	17.65	22	12.75	402.21	
6	0.5	0.71	0.71	17.65	25	14.7	539.55	Milavia
7	0	0.71	0.71	17.06	20	9.8	215.82	MIIOVIC
8	0.3	0.71	0.71	17.06	20	9.8	255.06	
9	0	0.1015	0.127	17.16	40	0	316.00	Yetimoglu
10	0	0.05	0.2	16.6	44	0	67.60	
11	0	0.0381	0.2	16.6	44	0	63.25	Leshchinsky
12	0.01	0.05	0.2	16.6	44	0	95.60	

1)

2)

19°

3)

Terzaghi

Meyerhof, Vesic

, Taiebat Carter 3

Taiebat Carter

가

V-M

, N

Ng, Nc

가

12.2°, 13.0°

4.

Milovic, Muhs, Yetimoglu Leshchinsky

		, Terz	zaghi	가
가 가		3		
(H _{max})				
	, Vesic, Meyerhof,	3	가	
Hansen	(V _u) 8%,			
13%, 12%				
4)				

Bransby, M.F., and Randolph, M.F.(1998)," Combined Loading of Skirted Foundations," Geotechnique, London, 48(5), pp.637~655. Chen, W.F.(1975), Limit Analysis and Soil Plasticity, Elsevier Science, Amsterdam. D. Leshchinsky, G.F. Marcozzi(1990), "Bearing capacity of shallow foundations: rigid versus flexible models", Journal of Geotechnical Engineering, Vol. 116, No. 11, pp.1750 ~ 1755. Drescher, A., and Detournay, E.(1993)," Limit Load in Translational Failure Mechanisms for Associative and Non-associative materials", Geotechnique, London, 34(2), pp.199~210. Frydman, S., and Burd, H.J.(1997)," Numerical Studies of Bearing Capacity Factor", J. Geotech. and Geoenvir. Engrg., ASCE, 123(1), pp.20~29. Griffiths, D.V. (1982)," Computation of Bearing Capacity Factors Using Finite Elements," Geotechnique, London, 32(3), pp.195~202. Hansen, B.J.(1961)," A General Formula for Bearing Capacity ", Bull. Dan. Geotech. Inst., 11, pp.38~46. Meyerhof, G.G.(1951)," The Ultimate Bearing Capacity of Foundations", Geotechnique, Vol. 2, No. 4, pp.301 ~ 331. Meyerhof, G.G. (1963), "Some Recent Research on the Bearing Capacity of Foundations", CGJ, Vol. 1, No. 1, pp.16~26. Michalowski, R.L., and Shi, L.(1995), "Bearing Capacity of Footings over Two-layer Foundation Soils", J. Geotech. Engrg., ASCE, 121(5), pp.421~428. Milovic, D.M.(1965)," Comparison between the Calculated and Experimental Values of the Ultimate Bearing Capacity," 6th ICSMFE, Vol. 2, pp.142~144. Muhs, H., and K. Weiss(1969)," The Influence of the Load Indination on the Bearing Capacity of Shallow Footings", 7th ICSMFE, Vol. 2, pp.187~194. Murff, J.D. (1994)," Limit Analysis of Multi footing Foundation System", Proceedings of Computer Methods and Advanced Geomechanics, pp.233~244. Prandtl, L.(1920), Uber die Haete plastistischer Korper. Nachr. Ges. Wissensch, Gottingen, pp.74~85. Reissner, H.(1924)," Zum Erddruckproblem ", Proc. 1st Int. Congr. for Appl. Mech., C.B. Biezeno and J.M. Burgers, eds., pp.295 ~ 311. Sarama, S.K., and Iossifelis, I.S.(1990), "Seismis Bearing Capacity Factors of Shallow Strip Footings", Geotechnique, London, 40(2), pp.265~273. Sarma, K.(1979), "Stability Analysis of Embankments and Slop", J. Geotech. Engrg., ASCE, 105(12), pp.1511 ~ 1524. Shield, R.T.(1954)," Plastic Potential Theory and the Prandtl Bearing Capacity Solution", J. Appl. Mech.., 21, pp.193 ~ 194. Sokolovskii, V.V.(1960), Statics of Soil Media, R. Jones and A.N. Schofield, translators, Butterworth 's, London. Soubra, A.H.(1999), "Upper-bound Solutions for Bearing Capacity of Foundations", J. Geotech. and Geoenvir. Engrg., ASCE, 125(1), pp.59~68.) T. Yetimoglu, J.T.H. Wu, A. Saglamer(1994), "Bearing capacity of rectangular footings on Geogrid-reinforced sand", Journal of Geotechnical Engineering, Vol. 120, No. 12, pp.2084 ~ 2093.) Taiebat H. & Cater J.P.(2000), "Numerical studies of the bearing capacity of shallow footings on cohesive soil subjected to combined loadingGeotechnique, 50(4), pp.408~418.) Terzaghi, K.(1943), Theoretical Soil Mechanics, John Wiley & Sons, New York, 510pp.

) Vesic, A.S.(1973)," Analysis of Ultimate Loads of Shallow Foundations ", JSMFD, Vol. 99, SM 1, pp.45 ~ 73.