
외부환경을 위한 터널 환기시스템 검토

- 00터널 설계사례를 중심으로

터널에서 특히, 도심지를 통과하는 경우 터널내의 환기방식은 매우 중요한 고려사항이다. 특히, EAP System은 토양을 이용 한 대기정화 시스템으로서, 터널내에서 운행되는 각종차량의 배기장치에서 배출되는 NO2, NOX, SOx, CO, 미세먼지 및 휘 발성유기물질(VOC)은 터널내에 설치된 흡입장치를 통해 송풍기로 이동되고, 포집된 자동차의 배기가스는 오존(O3)처리를 거쳐 송풍로를 따라 EAP조 상·하부로 이동되어 토양층으로 통과하게 된다. 이때 토양내에 존재하고 있는 미생물의 분해과 정 및 식물뿌리에 자생하는 박테리아에 의해 분해되어 제거된다. 또한, 오염물질중의 일부분은 토양내에 설치된 살수노즐에 서 살포되는 물에 세척되어 중력방향으로 이동하여 EAP조 하부로 떨어지게 되며, 곧 집수정으로 이동된다. 이 물은 연속적 으로 재살수되어 미생물 및 박테리아의 먹이로 작용되어 분해되어진다. 이외에도 해외 및 국내에 적용되고 있는 도심지 터널 환기 방식에 대해 실례를 통해 살펴보고자 한다.

개 요

터널에서 특히, 도심지를 통과하는 경우 터널내의 환기방식은 매 우 중요한 고려사항이다. 본 고에서는 00터널(터널 : L = 2.5km, 지하차도: L = 250m) 설계사례를 들어 도심을 통과 하는 경우에 대해 현재 해외 및 국내에서 적용되고 있는 환기설 비 방식에 대해 알아보고자 한다.

00터널은 비교적 길고 교통량이 많아 효율적인 터널내 환기개선 방안이 요구되며, 터널 시점부는 대규모APT 단지 및 상가 밀집 지역이 인접해 있어 대기오염으로 인한 민원이 예상되는바 환경 오염을 최소화 할 수 있는 친환경적이고 경제성 및 시공성, 유지 관리가 용이한 환기방식을 채택하는 것이 최우선 과제인 경우다.

| 그림 1 | 환기 System 선정 흐름도 2459 55 4512 - 65925 REZAVOR 287929 8 98 89280 92884 2282 848 78 8924 694 8708 작면된가 중앙급호 작면된가 가능급호 वक्रमान्यम् सम BUCHER (CC 문서 BUHER RES 전도

설비 시스템 종류

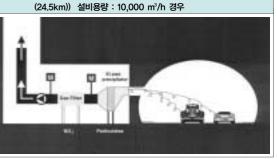
2-1. 전기집진기 설비 (EP Filter)

전기 집진기 설비(EP Filter)은 크게 일본식과 유럽식으로 나눌 수 있으며, 각각의 항목별로 살펴보면 다음의 〈표 1〉과 같다.

| 표 1 | 전기 집진기 설비(EP Filter) 해외 적용사례

항	목	일본식	유럽식
개요		전기집진기(EP Filter), 물세척 설비, 폐수처리장치(매연의 Cake화), 제어시스템 등으로 구성 집진된 환기풍은 터널상부 Duct(Nozzle)를 통하여 차도로 송풍하는 시스템 2계열 분할 설치가 원칙임	- 프리필터, 전기집진기(EP Filter), 물세척 설비, 히트펌프, 전원 공급장치, 제어 시스! 등으로 구성 - 집진된 환기풍은 터널 측벽에서 차도로 송풍하는 표준형과 송풍기 하류측에만 닥를 설치하여 터널상부에서 송풍하는 방식으로 국내에서 변형시킨 변화형의 2가지 ! 식이 있음 - 1계열 설치가 원칙이나 2계열 설치가능
	l실적 ass용)	JAPAN Kanetsu 터널외 국내실적 : 수정산터널, 우면산터널	NORWAY Granfoss 터널외 국내실적 : 진부터널
	Unit 구 성	• Cell의 규격은 5㎡/s로 이것을 조합하여 10, 15, 20, 30, 40㎡/s가 있으며, 각 Unit 를 조합하여 집진기 소요풍량 만족 • 중량: 0.8 / 1.4 / 3 / 4 / 6 / 8 ton/Unit	• Cell의 규격은 2.5m [*] /s (610 mm x 845mm)를 조합하여 집진기 소요풍량을 만족 고, 전단에는 프리필터 설치 • 중량 : 82kg/Cell
구조	세정 방법	•습식 수세정하며, 집진기를 부분적으로 세정하므로 세정시 집진기 정지없음 •수세정은 기본적으로 60㎡/s Unit 단위마다 정기적으로시행 •세정펌프, 세정수 저수조, 폐수저류조등의 세정용 기기로 구성 •세정시간: 60min/회 •세정수강: 5.5㎡/회 •세청주기: 24hr/대	•습식 수세정하며, 집진기 전체를 동시에 세정하므로 세정시 집진기 정지 •세정펌프, 세정수 저수조, 폐수저류조, Heat pump등의 세정용 기기로 구성 •세정시간: 225mm/회(건조포함) •세정수량: 25mm/회/따(재생순환식시스템 사용) •세정주랑: 25mm/회/대(재생순환식시스템 사용) •세적용제: 0.5mm/회/대 •세적주기: 300~500hr/대
	설치 방법	• 집진기실 길이 방향으로 2계열로 나누어 소요풍랑의 절반에 해당하는 집진기 용량을 설치하므로 집진기 설치부의 굴착단면적 축소	• 집진기 전단에 프리필터를 설치 • 집진기실 전체를 1계열로 하여 전체 소요풍량의 집진기를 설치하므로 집진기 설차 의 굴착단면적이 큼
	처리풍속	9m/s 0 ā}	7.8 m/s 이하
	집진효율	디젤매연에 대해 중량법 80% 이상	EUROVENT 4/9의 계수법에 의해 0.3~10µm에 대해 90 %이상
사양	압력손실	20mmAq / 처리풍속 9m/s (집진기 전체)	56/ 처리풍속 약 6m/s(프리 필터부 : 15mmAq, 전기 집진기 : 6mmAq)
	대인가전압	$DC + 11 \pm 0.5kV$	DC 11~15kV
	집인가전압	$DC + 5.5 \pm 0.5kV$	DC 5.5~6.5kV

2-2. Gas Cleaner 설비 (NOx 클리너)


유해가스인 NOx에 의한 인체유해성은 익히 잘 알려진 바이나. 특히 스톡홀름의 연구기관에서 발표한 실험결과를 살펴보면 〈표 2)와 같다. 노르웨이의 경우, L æ rdal 터널(24.5km)을 대상으 로 터널내에서 NOx 제거용 gas cleaner를 설치하기 위한 설비 성능 측정실험을 한 경우를 소개하면 다음과 같으며, 실험결과

| 표 2 | NOx에 의한 인체유해성 연구결과

실험기관	실험대상	실험조건	실험결과
Karolinska Institute (Stockholm)	가벼운 증상의 천식환자	NO2 500/g /m³에 30분 간 노출	10시간후 천식증상이 더 욱 악화됨
	신체 건강한 사람	NO2 500g /m³에 15분 간 노출	폐기능의 미세한 변화가 보임
실험분석		l 영향을 주진 않지만 폐기능 같은 곳에서의 교통지체시 건	

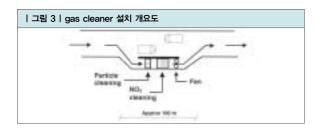
* WHO (World Health Organization)의 공기중 NO2 권장값 :100㎞ /m3

| 그림 2 | gas cleaner에 대한 성능실험 개요도 (노르웨이 Lærdal 터널

○ 기술정보 4 의 기술정보 4 의

| 표 1 | 전기 집진기 설비(EP Filter) 해외 적용사례

항	목	일본식	유럽식
	프레임	강판제용접구조 t = 4.5mm 이상	스테인레스 강
	대전부	STS 304 상당 t = 0.5mm	스텐레스강 t = 1.0mm
재질	집진부	STS 304 상당 t = 0.5mm	Aluminium t = 1,0mm
	프리필터	없음	
	방식	• 저류조, 여과기, 탈수기 등을 별도로 설치하여 폐수 Slurry를 Cake화하여 외부 반출	• 재생순환식 시스템을 채용하여 Slurry상태로 Tank에서 진공차로 외부 반출하는 방식
폐수	방류수질	SS 40ppm ାର୍ଚ	재생순환식 시스템 채용
처리	1차 분진	없음	• 프리필터에서 제거된 분진은 별도의 세척처리후 배출
	케익 함수율	함수율 70%	액상 슬러지 상태
	소요동력	약 6.0kW	약 53kW
화재시 대응성		집진기 자체는 연기제거가 가능하지만 집진기를 이용한 화재시 연기제거는 하지 않음 화재시 화염이나, 연기의 제어는 집진기보다 제트팬쪽이 유리함 송풍기, 집진기실내 전기실 등의 부대설비가 화재시 소손될 우려가 있으므로 가동치 않음 집진기의 매연부착능력에 한계가 있어 화재시 불과 수분만에 집진기의 기능을 상실함	집진기 자체는 연기제거가 가능하지만 집진기를 이용한 화재시 연기제거는 하지 않음 화재시 화염이나, 연기의 제어는 집진기보다 제트팬쪽이 유리함 송풍기, 집진기실내 전기실 등의 부대설비가 화재시 소손될 우려가 있으므로 가동치 않음 집진기의 매연부착능력에 한계가 있어 화재시 불과 수분만에 집진기의 기능을 상실함


NO₂의 평균 제거율은 80%이고, 공기내 NO₂ 비율에 따라 60~90% 제거효과를 나타내었다. 경제성(전기집진설비 + gas cleaner + Ø 1,030 제트팬 30대)을 검토해보면 유지관리비의 경우, gas cleaner 없이 제트팬을 추가하여 설치한 경우보다 년 간 8천만원 정도가 절약되는 것으로 나타났다.

2-3. EAP (Earth Air Purifier) System

토양을 이용한 대기정화시스템인 EAP System은 대기오염물질을 흡입장치를 통해 흡수하여 오존처리한 후 흙속에 있는 미생물 및 박테리아의 분해작용과 물의 세척작용을 이용해 자동차 배기 가스로 오염된 대기중의 오염물질을 친환경적으로 정화하는 시스템으로 적용사례 및 특징을 살펴보면 아래와 같다.

(1) EAP System의 개발 및 적용실적

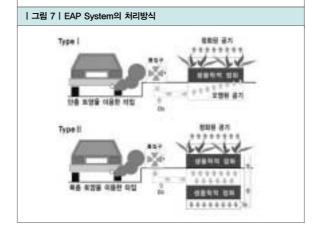
일본 건설성 및 환경성은 일본내 교통량의 증가와 함께 대기 오염물질 배출로 인하여 인근시민의 민원이 증가함에 따라 주 식회사 Fujita에 "토양을 이용한 대기정화시스템"의 연구를 의뢰하였고, 3년간에 걸친 연구성과에 따라 우수성이 입증되 어 1994년부터 현재까지 약 20개소 설치

(2) EAP System의 특징

토양미생물의 기능으로 영구적인 정화능력이 있어, 별도의 토양을 교체할 필요가 없고. 제거된 질소산화물은 토양미생물이나 식물의 질소비료로 이용되며, 다른 물리화학적인 공법과는 달리 유지관리를 위한 약품사용이나 폐기물 발생이 없으며, 상부토양층은 녹지로 활용하므로 친환경적이다

(3) EAP System 원리

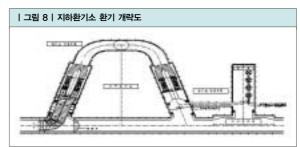
터널내에서 운행되는 각종차량의 배기장치에서 배출되는 NO2, NOX, SOx, CO, 미세먼지 및 휘발성유기물질(VOC) 은 터널내에 설치된 흡입장치를 통해 송풍기로 이동된다. 포집된 자동차의 배기가스는 오존(O3)처리를 거쳐 송풍로를 따라 EAP조 상·하부로 이동되어 토양층으로 통과하게 된다. 이때 토양내에 존재하고 있는 미생물의 분해과정 및 식물뿌리에 자생하는 박테리아에 의해 분해되어 제거된다.


또한, 오염물질중의 일부분은 토양내에 설치된 살수노즐에서 살포되는 물에 세척되어 중력방향으로 이동하여 EAP조 하부 로 떨어지게 되며, 곧 집수정으로 이동된다. 이 물은 연속적으 로 재살수되어 미생물 및 박테리아의 먹이로 작용되어 분해되 어진다.

EAP System은 아래와 같이 허용되는 부지면적의 크기에 따라 type-1의 단층식과 type-2의 복층식으로 구성된다

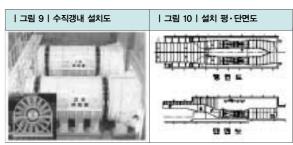
I 그림 5 I EAP System Diagram

| 그림 6 | EAP System 처리공정도



| 표 4 | 터널형 시스템에 의한 대기오염물질의 제거율 (처28,800m³/hr, EAP 면적: 400m²)

항 목	입구농도 (ppm)	출구농도 (ppm)	제거율 (%)		
이산화유황	0.004	0.000	91.4		
이산화질소	0.070	0.001	98.7		
질소산화물	0.793	0.011	98.7		
부유입자상물질	0.159	0.003	98.0		
비메탄탄화수소	1,34	0.44	66.0		
일산화탄소	10.8	0.07	99.4		


2-4. 수직갱 송배기 설비

수직갱을 이용한 환기설비는 축류팬의 사양에 따라 가변피치형과 인버터채용형으로 나눌 수 있으며, 팬의 용량 및 압력변화에 따른 범위를 산정하여, 공사비 및 유지보수비 측면과 운전 신뢰성이 우 수한 사양을 선정아혀 적용하여야 한다.

│표 5│ 축류팬 사임

표 5 죽류	표 5 죽류팬 사양						
구 분	가변피치형	인버터채용형					
개요	• 유압 및 공압기기의 자동으로 날개각 이 변하여 풍량 조절	• 가변주파수에 따라 회전수 변환으로 풍량 조절					
시스템 구성	• 가동익 조절장치, 유압장치 및 고정 극수 모타 채용	• 고정익과 주파수 변조기기 및 고정극 수 모타 채용					
풍량범위	• 날개 각도에 따라 다양한 조절	• 주파수에 따라 다양한 조절					
효율	• 풍량 및 풍압에 따라 연속적 대응으로 평균 효율 유지	• 풍량 및 풍압에 따라 연속적 대응으로 평균 효율 유지					
장점	• 차량수 및 자연풍의 변화에 따라 송 풍기 날개의 조절로 풍량제어, 압력 제어 가능	• 차량수 및 자연풍의 변화에 따라 회 전수 조절로 풍량 제어, 압력제어 가능					
단점	•초기 투자비가 상당히 고가이며, 유 지보수 곤란	•초기 투자비가 고가이며, 유지보수 다소 곤란					
적용사례	• 국내 화력발전소 및 다수의 유럽터널	• 주로 일본이나 구미의 터널에 적용					
초기 공사비	1.0 (기준)	0.8					
유지 보수비	1.0 (기준)	1.1					
선정	• 팬의 용량 및 압력변화에 따른 범위를 운전 신뢰성이 우수한 사양을 선정	산정하여, 공사비 및 유지보수비 측면과					

한기방식별 경제성 비교

터널주변 환경 및 장래 유지관리를 고려하여 적용할 수 있는 환기시스템은 원설계를 포함하여 다음과 같이 12개방안으로 비교할 수 있다. 또한, 각각의 방안에 대해 경제성을 비교하면 〈표13〉과 같다.

2006 Summer 45

● 기술정보 4

| 표 7 | 00터널 주변 환경개선을 위한 환기방식 비교표(1)

구 분		원안설계 1 안						
변기 방식					-			
환기 함식 기상 항상 함께 255m 100 1000 1000 1000 1000 1000 1000 10	구 분				J/F+집중배기	J/F + EAP		
개요 임사 방향 시기점 2500m 2500m 200m 지도 전 1,030 지도팬 12대 + 집중배기 350 이 1년을 즐구르의 오염물질 배출 억제 로 사가정방향 출구부 주거지역에 대한 환경 개선 - 화재시 제트팬 및 집중배기구에 의한 연기배출로 배연 효과 우수 이 1년을 즐구르의 오염물질 배출 오로 경구 환경 개선 - 화재시 제트팬 및 집중배기구에 의한 연기배출로 배연 효과 우수 이용한 대전 미흡 본산 : 58% 이 10을 대적 미합 한 대적 미비 한 대적 미리 한 대적 미비 환경 등 10을 대전 보안 등 1			L:200m 개편된 A77명 271소 양사 252m 2,575m		L:200m	AP 시스템 제트린 암사 2,575m		
### 12대			Tong processor & PRINTED	저트런 일사 -	the second secon			
환기 방식 등장점 보신 및 사가정방향 출구부 주거지역에 대한 환경 개선 - 경우 장래에 필요시 토양을 이용한 대기정화시스템 적용을 위한 공간 확보로 환경오염 대책 미현 - 조심중배기 환기탑 설치에 따른 추가 공사비 소요 - 수직구 부근 오염 영향성 증가 및 임사방향 오염 영향 대책 미흡 - 본산 : 58%~91% - 보산 및 회석시켜 배칭 나를 사람에 비에 따른 오염된 보상시, 오염을 확보하므로써, 제로 필요한 용광을 적확하게 작가능 (0.04ppm)을 초과하므로 이에 대한 대책 미비 보생 : 보고 대규모 부지확보로 인한설치 공간적인 문제 발생 보생 된 보생 : 보고 대규모 부지확보로 인한설치 공간적인 문제 발생 보생 : 보고 대규모 부지확보로 인한설치 공간적인 문제 발생 : 보고 대규모 부지확보로 인한설치 공간적인 문제 보생 : 보고 대규모 부지확보로 인한설치 공간적인 문제 발생 : 보고 대규모 부지확보로 인한설치 공간적인 문제 보생 : 보고 대규모 부지확보로 인한설치 공간적인 문제 보생 : 보고 대표 대표 보고 대표 보고 대표	설비	용량	제트팬 12대		제트팬 12대 + 집중배기 350 + 장래 (EAP 80	제트팬 14대 + 장래 (EAP 40		
공사비 소요 위한 구조계획에 따른 공사비 및 지보수 비용 증가 및 암시방향 오염 영향 대책 미흡 분산 및 매연 분산 : 58%~91%	방식	장점	로 사가정방향 취 대한 환경 개선 • 화재시 제트팬 및	출구부 주거지역에 집중배기구에 의한	터널 출구로의 오염물질 배출 억로 갱구 환경 개선 경우 장래에 필요시 토양을 이용한 대기정화시스템 적용을 위한 공간 확보로 환경오염			
분산 및 매년		단점	공사비 소요 • 수직구 부근 오염 영향성 증가 및 암사방향 오염 영향 대책		위한 구조계획에	따른 공사비 및 유		
### 2008 전환 전환 2008 작원/년 0.28 억원/년		매연	분산 : 58%~91%	-	분산 : 58%~91%	-		
유지를 이동하여, 시점부 주거 밀집 지역 및 환기탑 부근 공원지역의 오 연영향 최소화 *최근 터널 시점인 면목동 지역의 NO. 즉 정치가 서울시 기준 (0.04ppm)을 초과하므로 이에 대한 대책 미비 - 학교 대적인 문제 발생시, 오염을 제거할 수 있는 선택 적용 공간을 확보하므로써, 제로 필요한 용량을 적확하게 작가능 '발문의 대규모 부지확보로 인한 설치 공간적인 문제 발생 '한 대책 미비 '한			분산 : 58%~91%	-	분산 : 58%~91%	-		
공사비			위치를 이동하여, 시점부 주거 밀집 지역 및 환기탑 부근 공원지역의 오 염영향 최소화 •최근 터널 시점인 면목동 지역의 NO ₂ 측정 치가 서울시 기준 (0.04ppm)을 초과하므로 이에 대		하고, 장래에 0 발생시, 오염을 스템 적용 공간 제로 필요한 용 가능	이에 따른 오염문제 제거할 수 있는 시 을 확보하므로써, 실 량을 적확하게 적용 부지확보로 인한		
중공사비 44.6 억원 5.1 억원 44.6 억원 5.1 억원 49.7 억원 49.7 억원 49.7 억원 49.7 억원 420 kW 7분요금 0.82 억원/년 0.28 억원/년 0.58 억원/년 0.28 억원/년 유지비 사용요금 125 억원/년 0.43 억원/년 0.88 억원/년 0.43 억원/년		토목분야	33.0 억원	– 억원	33.0 억원	– 억원		
총공사비 44.6 억원 5.1 억원 44.6 억원 5.1 억원 49.7 억원 49.7 억원 49.7 억원 420 kW 860 kW 420 kW 기본요금 0.82 억원/년 0.28 억원/년 0.58 억원/년 0.28 억원/년 유지비 사용요금 125 억원/년 0.43 억원/년 0.88 억원/년 0.43 억원/년	공사비	기계분야						
소요동력 1,220 kW 420 kW 860 kW 420 kW 기본요금 0,82 억원/년 0,28 억원/년 0,58 억원/년 0,28 억원/년 유지비 사용요금 1,25 억원/년 0,43 억원/년 0,88 억원/년 0,43 억원/년		총공사비						
기본요금 0.82 억원/년 0.28 억원/년 0.58 억원/년 0.28 억원/년 유지비 사용요금 125 억원/년 0.43 억원/년 0.88 억원/년 0.43 억원/년		소요동력						
			· ·			0.28 억원/년		
장비보수비 0.23 억원/년 0.10 억원/년 0.19 억원/년 0.10 억원/년	유지비					0.43 억원/년		
						0.10 억원/년		
합계 2,30 억원/년 0,81 억원/년 1,65 억원/년 0,81 억원/년 선정	서		2.30 식편/단	U.OI 작권/단	1,00 식권/단	0.81 억원/년		

| 표 8 | 00터널 주변 환경개선을 위한 환기방식 비교표(2)

표 8 00터틸 수면 완경개선들 위한 완기망식 미교표(2)					
구분		사가정 방향	나 암사 방향	사가정 방향	암사 방향
		J/F + 집중배기	J/F 방식	J/F+집중배기 +EAP(장래)	J/F + EAP (장래)
사가정 방 향 환기		전기집전기 + NO.급리너 By-pass왕) 사기정 - 527m	제표된 일사 2,300m	집중배기소 EAP AL 사기점 환기소 - 252m	선트런 원 2575m
방식 개요	암사 방향	제트린 사기정 2,560m	EAPAL스템 임사 252m	제목된 사기점 → 25	EAP 시스템 (장전계획) 당 60m 252m (
설비	용량	ø 1,030 제트팬 14대 + EP 300 CMS + NOx 150 CMS	ø 1,030 제트팬 14대 + 장래 (EAP 40 CMS)	ø 1,030 제트팬 12대 + 집중배기 350 + EAP 80 CMS	ø 1,030 제트팬 14대 + 장래 · (EAP 40 CMS)
장점 환기 방식 특징		- 집진기에 의한 매연정화 및 NOx를 리너에 의한 집소산화물 제거로 매면 및 가스상 물질 효과적 - 암사병향의 경우 장래에 필요시 토양을 이용한 대기정화시스템 적용을 위한 공간 확보로 환경오염 대책마면 - 환기탑 및 환기소 제거로 친환경적이며, 이로 인한 민원방지 효과기대		선 ² 장래에 필요시 토 기정화시스템 적용	
	단점				보 및 시스템 적용을 따른 공사비 및 유 ^가
분산 및	매연	제거 : 40%~81%	-	분산 : 58%~91% 제거 : 13%~45%	-
제거 효율	가스상 물질	제거 : 20%~57%	-	분산: 58%~91% 제거: 13%~45%	-
본과업적용성		오염물질을 분산 및 희석시켜 배출 하고, 암사방향은 이에 따른 추후 오염문제 발생시, 오염을 제가할수 있는 시스템 적용 공간을 확보하므 로써, 실제로 필요한 용량을 적확하 게적용 가능 별도의 대규모 부지확보로 인한 설 치 공간적인 문제 발생		하고, 암사방향은 이에 따른 추후 오염문제 발생시, 오염을 제거할수 있는 시스템 적용 공간을 확보하므 로써, 실제로 필요한 용량을 적확하 게 적용기능	
	토목분야		– 억원	24.7 억원	– 억원
공사비	기계분야	118.7 억원	5.1 억원	95.2 억원	5.1 억원
	총공사비	134,7 억원	5.1 억원	119.9 억원	5.1 억원) 억원
	소요동력		역면 420 kW	1,025 kW	420 kW
	기본요금	0.62 억원/년	0,28 억원/년	0.69 억원/년	0,28 억원/년
유지비	사용요금	0.94 억원/년	0.43 억원/년	1.05 억원/년	0.43 억원/년
	장비보수비	1.71 억원/년	0.10 억원/년	2.43 억원/년	0.10 억원/년
	합 계	3,27 억원/년	0.81 억원/년	4.17 억원/년	0.81 억원/년
선	정	I		1	

| 표 9 | 00터널 주변 환경개선을 위한 환기방식 비교표(3)

		표 9 00터널 주변 환경개선을 위한 환기방식 비교표(3)							
		4		_	안				
구	분	사가정 방향	암사 방향	사가정 방향	암사 방향				
		J/F + 집중배기 (필터) + EAP	J/F + EAP (장래)	J/F + EP + NOx	J/F + EAP				
환기 방식	사가정 방 향	집중배기소 EAP 시스템 Pre-Filler) 사기명 황기소 252m	제트폰 양사 - 2.575m	전기집인기 + NOc급리너 (By-pass함) 사기정 환기소 - 527m	제트턴 알사 2,300m				
개요	암사 방향	제트린 사기정 2,560m	EAP 시스템 (정명개혁) 임사 (SB 개혁)	제트핀 사가정 	EAP 시스템 임사 60m 252m I				
설비용량		ø 1,030 제트팬 12대 + 집중배기(필터) 350 CMS + EAP 80 CMS	ø 1,030 제트팬 14대 + 장래 (EAP 40 CMS)	ø 1,030 제트팬 14대 + EP 300 + NOx 150 CMS	ø 1,030 제트팬 14대 + EAP 40 CMS				
환기 방식 특징	장점	터널 출구로의 오로 생구환경 개선 토양을 이용한 경로 환경친화적 화재시 제트팬 및 연기배출로 배연 :	! 정화시스템 적용으 집중배기구에 의한	리너에 의한 질소산화물 제거로 연 및 가스상 물질 효과적 *암사방향의 경우 토양을 이용한 기정하시스템 점용으로 화경치형					
	단점		. 및 시스템 적용에 우지보수 비용 증가 개선 효과	• 토양총 부지 확보 및 시스템 적용을 위한 구조계획에 따른 공사비 및 유 지보수 비용 증가 • 설비 공사비 대비 개선 효과 미흡					
분산 및	매연	분산: 58%~91% 제거: 36%~75%	-	제거 : 40%~81%	제거 : 6%~22%				
제거 효율	가스상 물질	분산: 58%~91% 제거: 13%~45%	-	제거 : 20%~57%	제거 : 6%~22%				
본과업적용성		오염물질을 분산시켜, 분산되는 일 부 오염물질을 제거하고, Pre-Filler를 이용한 추가 매연제거로, 주거 밀집지역 및 환기탑 인근지역 오염 영향 최소화 EAP설비에 따른 공사비 대비 제거 효과가 작고, 별도의 대규모 부지확 보로 인한 설치 공간적인 문제 발생		거가 가능하여, 시점부로 오염물질 이 전량 배출되더라도 터널 내외부 환경개선 효과 우수					
본과업	검적용성	영향 최소화 • EAP설비에 따른 효과가 작고, 별5	공사비 대비 제거 E의 대규모 부지확	이 전량 배출되 환경개선 효과 ⁴ • 암사방향은 EAI 비 대비 제거효 대규모 부지확도	더라도 터널 내외부 우수 P설비에 따른 공사 과가 작고, 별도의				
본과업	[전용성 토목분야	영향 최소화 • EAP설비에 따른 효과가 작고, 별5	공사비 대비 제거 E의 대규모 부지확	이 전량 배출되 환경개선 효과 ⁴ 아암사방향은 EAI 비 대비 제거효 대규모 부지확도	더라도 터널 내외부 우수 P설비에 따른 공사 과가 작고, 별도의				
		영향 최소화 • EAP설비에 따른 효과가 작고, 별5 보로 인한 설치 경	공사비 대비 제거 E의 대규모 부지확 B간적인 문제 발생	이 전량 배출되 환경개선 효과 ' '암사방향은 EAI 비 대비 제거효 대규모 부지확 적인 문제 발생	더라도 터널 내외부 우수 P설비에 따른 공사 과가 작고, 별도의 로 인한 설치 공간				
	토목분야 기계분야	영향 최소화 • EAP설비에 따른 효과가 작고, 별5 보로 인한 설치 전 인한 설치 전 인한 설치 전 102.4 억원 127.1 억원	공사비 대비 제거 도의 대규모 부지확 공간적인 문제 발생 - 억원 5.1 억원 5.1 억원	이 전량 배출되 환경개선 효과 ⁴ • 암사방향은 EAI 비 대비 제거효 대규모 부지확도 적인 문제 발생 16.0 억원 118.7 억원	대라도 터널 내외부 우수 P설비에 따른 공사 과가 작고, 별도의 로 인한 설치 공간 0.7 억원 48.8 억원 49.5 억원				
	토목분야 기계분야 총공사비	영향 최소화 • EAP설비에 따른 효과가 작고, 별5 보로 인한 설치 전 인한 설치 전 인한 설치 전 102.4 억원 127.1 억원 132.2	공사비 대비 제거 도의 대규모 부지확 공간적인 문제 발생 - 억원 5.1 억원 억원 억원	이 전량 배출되 환경개선 효과 ⁴ • 암사방향은 EAI 비 대비 제거효 대규모 부지확도 적인 문제 발생 16.0 억원 118.7 억원 134.7 억원	대라도 터널 내외부 P수 P설비에 따른 공사 과가 작고, 별도의 로 인한 설치 공간 0.7 억원 48.8 억원 49.5 억원				
본과업 공사비	토목분야 기계분야 총공사비 소요동력	영향 최소화 • EAP설비에 따른 효과가 작고, 별도보로 인한 설치 경 24.7 억원 102.4 억원 127.1 억원 132.2 1,025 kW	공사비 대비 제거 E의 대규모 부자확 공간적인 문제 발생 - 억원 5.1 억원 억원 420 kW	이 전량 배출되 환경개선 효과 ⁴ • 암사방향은 EAI 비 대비 제거효 대규모 부지확보 적인 문제 발생 16.0 억원 118.7 억원 134.7 억원 167.7 920 kW	대라도 터널 내외부 우수 P설비에 따른 공사 과가 작고, 별도의 로 인한 설치 공간 0.7 억원 48.8 억원 49.5 억원 7 억원 510 kW				
공사비	토목분야 기계분야 총공사비 소요동력 기본요금	영향 최소화 • EAP설비에 따른 효과가 작고, 별도보로 인한 설치 경 102.4 억원 127.1 억원 132.2 1,025 kW 0.69 억원/년	공사비 대비 제거 E의 대규모 부지확 B간적인 문제 발생 - 억원 5.1 억원 억원 420 kW 0.28 억원/년	이 전량 배출되 환경개선 효과 ⁴ • 암사방향은 EAI 비 대비 제거효 대규모 부지확보 적인 문제 발생 16.0 억원 118.7 억원 134.7 억원 167.7 920 kW 0.62 억원/년	대라도 터널 내외부 우수 P설비에 따른 공사 과가 작고, 별도의 로 인한 설치 공간 0.7 억원 48.8 억원 49.5 억원 7 억원 510 kW 0.34 억원/년				
	토목분야 기계분야 총공사비 소요동력	영향 최소화 • EAP설비에 따른 효과가 작고, 별도보로 인한 설치 경 24.7 억원 102.4 억원 127.1 억원 132.2 1,025 kW	공사비 대비 제거 E의 대규모 부자확 공간적인 문제 발생 - 억원 5.1 억원 억원 420 kW	이 전량 배출되 환경개선 효과 ⁴ • 암사방향은 EAI 비 대비 제거효 대규모 부지확보 적인 문제 발생 16.0 억원 118.7 억원 134.7 억원 167.7 920 kW	대라도 터널 내외부 우수 P설비에 따른 공사 과가 작고, 별도의 로 인한 설치 공간 0.7 억원 48.8 억원 49.5 억원 7 억원 510 kW 0.34 억원/년 0.53 억원/년				
공사비	토목분야 기계분야 총공사비 소요동력 기본요금 사용요금	영향 최소화 • EAP설비에 따른 효과가 작고, 별5 보로 인한 설치 전 102.4 억원 127.1 억원 132.2 1,025 kW 0.69 억원/년 1.05 억원/년	공사비 대비 제거 E의 대규모 부지확 B간적인 문제 발생 - 억원 5.1 억원 5.1 억원 억원 420 kW 0.28 억원/년 0.43 억원/년	이 전량 배출되 환경개선 효과 ⁴ • 암사방향은 EAI 비 대비 제거효 대규모 부지확 적인 문제 발생 16.0 억원 118.7 억원 134.7 억원 134.7 억원 920 kW 0.62 억원/년 0.94 억원/년	대라도 터널 내외부 우수 P설비에 따른 공사 과가 작고, 별도의 로 인한 설치 공간 0.7 억원 48.8 억원 49.5 억원 7 억원 510 kW 0.34 억원/년				

l 표 10 l 00터널 주변 환경개선을 위한 환기방식 비교표(4)

		6	안	7	안
_	_	사가정 방향	- 암사 방향	사가정 방향	- 암사 방향
구	문	J/F + EP	J/F + EP	J/F + EP + EAP (장래)	J/F + EP + EAP(장래)
환기	사가정 방 향	전기집전기 (B)~pass형) 사기정	제트편 암사 2,300m	EAP 시스템 전가집간기 (징대계회) 사가점 환기소 252m 275m	저트면 양 2,300m
방식 개요	암사 방향	찬가집찬기 (By-pass함) 사가장 2,300m	저트편 알사 → 512m	전기집단기 (B)-pass행 제트판 사기정 	EAP 시스템 (전체계회) 260m 252m
설비	용량	ø 1,030 제트팬 14대 + EP 300 CMS	ø 1,030 제트팬 14대 + EP 150 CMS	ø 1,030 제트팬 14대 + EP 300 + 장래 (EAP 80 CMS)	ø 1,030 제트팬 14대 + EP 150 + 장래 (EAP 40 CMS 환기방식
환기 방식 특징	장점		한 매연 제거로 터 부 환경 개선효과 의한 연기배출	외부 환경개선 • 추후 필요시 토	매연제거로 터널 나 양을 이용한 대기전 매연 및 질소산화물
	단점		집진기 등 고가의 공사비 및 유지보		보 및 시스템 적용어 유지보수 비용 증기
분산 및 제거	매연	제거 : 40%~81%	제거 : 40%~81%	제거 : 40%~81%	제거 : 20%~69%
효율	가스상 물질	_	_	_	-
본과업적용성		소형차 위주의 교통으로 매연발생 량이 적으므로 설치에 따른 효과가 낮아지나, 외부 환기구가 없어 만원 미발생 가스류증 NO ₂ 에 대한 제거 대책이 없어 외부 환경 오염관련 별도 대책 필요		량이 적으므로 터널내 효과는 ! 염을 최소화 가능	교통으로 매연발생 집진기 설치에 따른 낮으나, 외부 환경오 5 설치에 따른 별도의 설로 인한 설치 공긴
	토목분야	16.0 억원	16.0 억원	16.0 억원	16.0 억원
7 Dol	기계분야	81.6 억원	48.6 억원	81.6 억원	48.6 억원
공사비	초고니니	97.6 억원	64.6 억원	97.6 억원	64.6 억원
	총공사비	162,2			2 억원
	소요동력 기보으크	790 kW 0.53 억원/년	790 kW 0.53 억원/년	690 kW 0.46 억원/년	690 kW 0.46 억원/년
유지비	기본요금 사용요금	0.53 억원/년 0.81 억원/년	0.53 억원/년 0.81 억원/년	0.46 억원/년 0.71 억원/년	0.46 억원/년 0.71 억원/년
.11-1	정비보수비	0.97 억원/년	0.97 억원/년	0.73 억원/년	0.73 억원/년
	합 계	2.31 억원/년	2.31 억원/년	1.90 억원/년	1.90 억원/년
선	정				

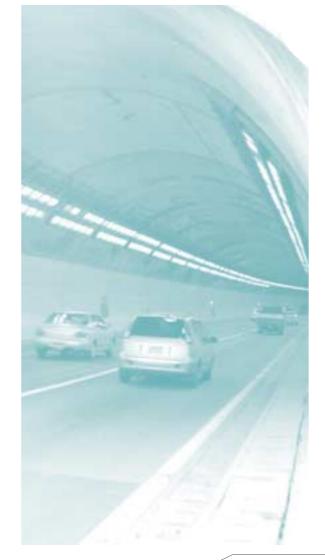
● 기술정보 4 의 기술정보 4 의 기술 정보 4 의 기술 정

| 표 11 | 00터널 주변 환경개선을 위한 환기방식 비교표(5)

	표 11 00터일 수면 완성개선을 위한 완기명식 미교표(5) 8 안 9 안					
		사가정 방향	인 암사 방향	9 안 사가정 방향 임사 방향		
구	분	J/F + 집중배기	□^ 66	J/F + EP	J/F + EP	
		+ EAP	J/F + EAP	+ EAP	+ EAP	
환기	사가정 방 향	집중배기소 EAP 시스템. 사기정 활기소 252m	제트펜 사기정 암사 ← 환기소 ←		제트란 임시 2,300m	
방식 개요	암사 방향	제트린 사기정 2,560m	EAP 시스템 암사 	전기집전기 (B)-pass(8) 제트편 사기점 → 2,300m	EAP 시스템 일시 260m 252m	
설비	용량	ø 1,030 제트팬 12대 + 집중배기 350 + EAP 80 CMS	ø 1,030 제트팬 14대 + EAP 40 CMS	ø 1,030 제트팬 14대 + EP 300 CMS + EAP 80 CMS	Ø 1,030 제트팬 14대 + EP 150 CMS + EAP 40 CMS	
환기 장점 방식 특징		타님널 출구로의 오염물질 배출억제로 갱구환경 개선 토양을 이용한 정화시스템 적용으로 환경친화적 화재시 제트팬 및 집중배기구에 의한 연기배출로 배연 효과 우수		집진기 및 토양을 이용한 대기정화 시스템으로 매연 및 질소산화물 제 거 효과적 토양을 이용한 대기정화시스템 적 용으로 환경친화적		
	단점	• 토양층 부지 확보 및 시스템 적용에 대한 공사비 및 유지보수 비용 증가 • 설비 공사비 대비 개선 효과 미흡		• 토양층 부지 확보 및 시스템 적용에 대한 공사비 및 유지보수 비용 증가 • 설비 공사비 대비 개선 효과 미흡		
분산 및 제거	매연	분산 : 58%~91% 제거 : 13%~45%	제거 : 6%~22%		제거 : 25%~76%	
효율	가스상 물질	분산 : 33%~91% 제거 : 13%~45%	제거 : 6%~22%	제거 : 13%~45%	제거 : 6%~22%	
물실 본과업적용성		- 오염물질을 본산시켜, 분산되는 일부 오염물질을 제거하므로, 시점부주거 말전지역 및 환기탑 인근지역의 오염영향 최소화 - EAP설비에 따른 공사비 대비 제거효과가 작고, 별도의 대규모 부지확보로 인한 설치 공간적인 문제 발생		소형차 위주의 교통으로 매연발생 량이 적으므로 집진기 설치에 따른 터널내 효과는 낮으나, 외부 환경오 염을 최소화 가능 EAP설비에 따른 공사비 대비 제거 효과가 작고, 별도의 대규모 부지확 보로 인한 설치 공간적인 문제 발생		
	토목분야	24.8 억원	0.7 억원	40.8 억원	16.7 억원	
7 Dol	기계분야	95.2 억원	48.8 억원	148.7 억원	92.3 억원	
공사비	총공사비	120.0 억원	49.5 억원	189.5 억원	109.0 억원	
		169.5			5 억원	
	소요동력 기본요금	1,025 kW 0.69 억원/년	670 kW 0.45 억원/년	855 kW 0.57 억원/년	855 kW 0.57 억원/년	
			0.45 학원/년	0.88 억원/년	0.57 학원/년	
유지비	사용요금	100 279/51				
유지비	사용요금 장비보수비	1.05 억원/년 2.43 억원/년	3.79 억원/년	2.96 억원/년	2.96 억원/년	
유지비						

| 표 12 | 00터널 주변 환경개선을 위한 환기방식 비교표(6)

1 ± 12	1 00=1	일 수면 완성개신			21	
		10		11 안		
구	분	사가정 방향	암사 방향	사가정 방향	암사 방향	
		J/F + EP + NOx	J/F + EP + NOx	J/F + 수직송배기	J/F + 수직송배기	
환기	사가정 방 향	전기장인기 + NO-급리석 (8)-poss 제표편 사가경 일사 527m 2300m		수작명 AFT명 880m	제표편 양사 1960m	
방식 개요	암사 방향	찬가졌던기 + NOc큐리너 (B)~pass원 저트런 사가정	일AF 512m	수명 제편 : 사기점 SSn SSn		
세트팬 14대 제트팬 14대 제트팬 12대 기		ø 1,030 제트팬 12대 + 수직송배기 150 CMS				
환기 방식 특징	장점	접진기에 의한 매연정화 및 NOx클리너에 의한 질소산화물 제거로 매연 및 기스상 물질 제거 효과적 터널 내외부 환경 개선효과 우수 화재시 제트팬에 의한 연기배출				
	단점	• 집진갱 건설 및 집진기와 가스클리 너 등 고가의 장비사용에 따른 공사 비 및 유지보수 비용 증가		수직갱 건설 및 환기소 설치에 따른 추가 공사비 소요 수직구 부근 오염 영향성 증가		
분산 및 제거	매연	제거 : 40%~81%	제거 : 20%~69%	분산 : 19%~65%	분산 : 19%~65%	
제기 효율	가스상 물질	제거 : 20%~69%	제거 : 10%~36%	분산 : 19%~65%	분산 : 19%~65%	
본과업적용성		소형차 위주의 교통으로 매연발생 량이 적으므로 설치에 따른 효과가 낮아지나, 외부 환기구가 없어 민원 미발생 가스류중 NO ₂ 에 대한 제거가 가능 하여, 시점부로 오염물질이 전량 배출되더라도 터널 내외부 환경개선효과 우수		설치위치의 한계성(공원, 등산로, 유적지 등)으로 오염물질의 분산배 출 효과가 낮아짐 공사에 따른 산림 및 유적물 훼손 우려가 있어 시공성 불리		
	토목분야	16.0 억원	16.0 억원	72,0 억원	72.0 억원	
공사비	기계분야 총공사비	118.7 억원 134.7 억원	74.6 억원 90.6 억원	17.9 억원 89.9 억원	17.9 억원 89.9 억원	
	소요동력	225,3 920 kW	역원 920 kW	1,100 kW	3 억원 1,100 kW	
	기본요금	920 KW 0.62 억원/년	0.62 억원/년	0,74 억원/년	0,74 억원/년	
유지비	사용요금	0.94 억원/년	0.94 억원/년	1.13 억원/년	1.13 억원/년	
	장비보수비	1.71 억원/년	1.71 억원/년	0.35 억원/년	0.35 억원/년	
14	합 계	3.27 억원/년	3,27 억원/년	2,22 억원/년	2,22 억원/년	
선	정					


| 표 13 | 공사비 산출 비교표

구 분	산출근거		비고
	• 환기소	= 24.0 억원	기본설계
원 안	• 환기BOX	= 9.0 억원	내역 참조
	•총공사비	= 33.0 억원	
	• 환기소	= 24.0 억원	기본설계
1 안	• 환기BOX	= 9.0 억원	내역 참조
	•총공사비	= 33.0 억원	
2 안	• 집진갱(160m)	- 10.0 0191	
2 21	160m × 10,000,000원/m • 총공사비	= 16.0 억원 = 16.0 억원	
	• 황기소		
	• 원기소 • EAP 정화시설부지 (1,200m² × 1,0m(최소3	= 24.0 억원	
3 안	*EAP 영화시골부시 (1,200m × 1,00m)의소(1,200m) × 5,136원/m³ + 1,200m³ × 5		기본설계
0 2	= 73,363,200	⇒ 0.7 억원	내역 참조
	• 총공사비	= 24.7 억원	
	• 환기소	= 24.0 억원	
	• EAP 정화시설부지 (1,200㎡ × 1,0m(최소종		
4 안	= 1,200㎡ × 5,136원/㎡ + 1,200㎡ × 5		기본설계
	= 73,363,200	⇒ 0.7 억원	내역 참조
	• 총공사비	= 24.7 억원	
	• 집진갱(160m)		
	160m × 10,000,000원/m	= 16.0 억원	
5 안	EAP 정화시설부지 (1,200㎡ × 1.0m(최소		
O E	= 1,200m³ × 5,136원/m³ + 1,200m³ × 5		
	= 73,363,200	⇒ 0.7 억원	
	• 총공사비	= 16.7 억원	
0.01	• 집진갱(160m) x 2(양방향)	00.0.0101	
6 안	160m × 10,000,000원/m x 2	= 32.0 억원	
	• 총 공 사비	= 32.0 억원	
	• 환기소 • 집진갱(160m) x 2(양방향)	= 24.0 억원	기본사제
7 안	• 업전성(160H) X 2(명명명) 160m × 10,000,000원/m x 2	= 32,0 억원	기본설계 내역 참조
	· 총공사비	= 56,0 억원	네ㅋ ===
	• 환기소	= 24.0 억원	
	EAP 정화시설부지 (1,200m² × 1,0m(최소		
8 안	x 2(양방향) = (1,200㎡ × 5,136원/㎡ +		기본설계
0 _	56,000원/m³) x 2 = 146,726,400	= 1.5 억원	내역 참조
	• 총공사비	= 25.5 억원	
	• 환기소	= 24.0 억원	
	• 집진갱(160m) x 2(양방향)		
	160m × 10,000,000원/m x 2	= 32,0 억원	
9 안	• EAP 정화시설부지 (1,200㎡ × 1.0m(최소		기본설계
	비) x 2(양방향) = (1,200㎡ × 5,136원/㎡		내역 참조
	56,000원/m³) x 2 = 146,726,400	= 1.5 억원	
	• 총공사비	= 57.5 억원	
	• 집진갱(160m) x 2(양방향)	00.0.0101	기본설계
10 안	160m × 10,000,000원/m x 2	= 32,0 억원	내역 참조
	· 총공사비	= 32.0 억원	
	• 수직갱(120m) x 2(양방향) 120m × 50,000,000원/m x 2	= 120.0 억원	
11 안	120m × 50,000,000원/m x 2 • 횡갱(120m) x 2(양방향)	- 120,0 익현	기본설계
11 2	120m × 10,000,000원/m x 2	= 24.0 억원	내역 참조
	• 총공사비	= 144.0 억원	
	00/191	- 144,0 7/2	

막대한 영향을 미치는 매우 중요한 인자로서 장래교통량을 반영하여 보다 효과적이고 경제적이며, 환경친화적인 환기 시스템을 적용할 수 있도록 하여야 할 것이다. \$

◎ 참고문헌

- 최준석외, 2002, "터널내 자동차화재와 풀화재 비교 분석", 한국화재소방학회 춘계학술논 문발표회, 5-36.
- N.H. Danziger and W.D. Kennedy, 1982, "Longitudal ventilation analysis for the Glenwood Canyon tunnels,", 4th Int. Sym. on the Aerodynamics & Ventilation of Vehicle Tunnels, 169–181.
- 윤찬훈 외, 2006, "장대 교통터널 화재시 임계속도 결정에 관한 실험적 연구", 한국암반 공학회지 터널과 지하공간, 85-94.

04 결론

이상과 같이 현재 국내 및 해외에서 적용되고 있는 환기설비 방식에 대해 실제 국내 도심지 터널 설계사례를 중심으로 비교, 검토해 보았다. 도심지에서의 터널내 환기방식은 주변 생활환경에

<u>48</u> 건설기술|쌍용